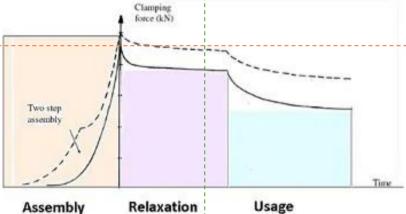

HOW TO USE CONICAL WEDGE LOCK WASHER PAIRS

The Conical Wedge Lock washers contained in this package are to be used in pairs. They are manufactured from Spring Steel, hardened to Bockwell C of 46 to 48, with a Black Oxidization surface treatment which provides both anti-corrosion properties and reduced friction. reducing Torque, when properly lubricated. They have 3 distinct physical features:

- 1. They are shaped in a dome, so that a force must be applied to flatten them, just like a spring.
- 2. Each has a mating surface with wedge shaped CAMS into which the other locks.
- 3. The outer surface has smaller radial GRIPS that will embed themselves into the respective assembly surface.

These physical properties are specifically designed to prevent loosening of any static bolted connection they are applied to, and deals with both spontaneous loosening and non-rotational loosening.



Spontaneous loosening of a bolted assembly takes place when the fastened bolt/nut rotates "spontaneously", and often the slightest rotation of only a few degrees is sufficient for a bolted connection to lose all its preload

This rotational loosening is exacerbated when any part of the bolted assembly experiences slackening. This is a collective term for the various causes of non-rotational loosening.

The Conical Wedge Lock Washer Pair contained in this packet address both the rotational and non-rotational causes for loss of preload in a well-designed bolted connection, firstly (as the Safety Washer does) using CAM geometry and contact GRIPS to deal with spontaneous bolt loosening from shocks, vibrations, and dynamic loading and secondly, (which is where our improvement focuses) it addresses slackening due to settlement, creep, differential thermal expansion, relaxation and yielding.

Settlement (also called Embedding) takes place on the contact surfaces between the various assembly parts and is easily observed by indentations. It is caused by localised plastic deformation. Surfaces may appear to be smooth but when sufficiently magnified, jagged peaks are evident (these are the same structures that Shot Peening targets as they are also the source of fatigue crack propagation). They are called

A drop of preload directly following the tightening procedure is mainly attributed to settlement and elastic recovery. Unlike with settlement or creep, the clamp length does not change, which makes it more difficult to detect. Subsequent loss of preload follows a power function with time. Retightening of bolts can reduce the preload loss due to relaxation, but the preload loss directly following the tightening procedure prevails, especially when tightening is done at a fast rate.

The actual contact area between opposing asperities can be substantially less than the apparent area. It is these asperity contacts that deform and flatten. The loading to cause this is substantially less than the load needed to plastically deform the entire apparent contact area. Stress-Relaxation is the decrease of preload, experienced over time, with no visible physical change to the bolt. This is a form of creep and occurs when high stresses present in a bolt are relieved over time, most notably, at elevated temperatures.

<u>Creep</u> (sometimes called cold flow) is a property of materials that results in **<u>progressive deformation</u>** and is a result of long-term exposure to high levels of stress that are still below the yield strength of the material. Creep is more severe in materials that are subjected to heat for long periods and generally increases as they near their melting point. The rate of creep deformation is a function of the material's inherent mechanical properties, exposure time, exposure temperature and the applied load.

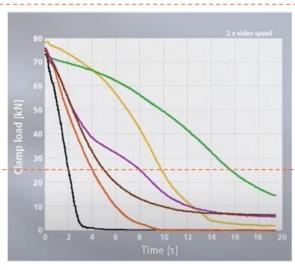
When slackening occurs for any reason, the typical wedge geometry will NOT maintain preload and keep the connection secure. This is why we have taken our years of experience in Conical Disc Spring design and manufacture and applied these insights to the issue of slackening as a cause of preload loss. A good understanding and control of the torque vs clamp load relationship is essential to minimise the probability of loss of preload as we must firstly work within the mechanical constraints and realities of the assembly.

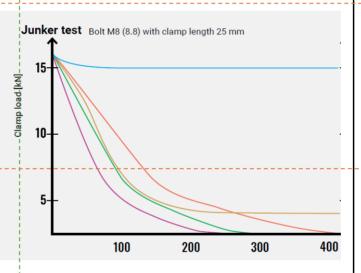
Conditions arise frequently where these phenomena that cause slackening materialise, here ae a few examples:

- Whenever a gasket or similar seal is part of the assembly
- Where the clamp load has a Powder Coating or thick Paint surface protection finish
- Where the clamping is made up of multiple components
- Where clamped parts are softer metals, or polymers
- The assembly is subjected to thermal differentials and expands and contracts
- Where lower property class bolts of 4.6, 8.6 are used, instead of 8.8, 10.9 and 12.9
- Where field conditions are beyond the control of operations and installation lacks discipline

In all these scenarios, the geometry of the CAM alone will be insufficient to prevent loosening, and the extra Spring effect, provided by the Conical Shape is required to further reduce the likelihood of preload being lost.

We have explained the sources and cause of slackening in a static bolted connection and why, when slackening occurs for any reason, the typical wedge geometry will not maintain preload and keep the connection secure. This is why we have taken our years of experience in Conical Disc Spring design and manufacture and applied these insights to the issue of slackening as a cause of preload loss.


When we combine the Nordloc Safety Washer's Geometry with a Conical Disc Spring



When the fasener is tightened the CAMS lock and he GRIPS on the outer surfaces embed themselves into the fastener nut and the clamped part, leaving impressions on both. Because the gradient of of the wedges is greaer than the size of the fasteners pitch, any rotational movement results in tightening of the wedges and an increase in preload, thus securing the assembly.

Comparative Junker Tests

What typically happens when different solutions are applied to a bolted connection? Without exception, whether a nut and washer, spring washer, double nut. Nylon insert. Helical Spring washer, preload is lost spontaneously.

The Stress-Strain Curve

The relationship between tension and bolt stretch can be observed on a Stress-Strain Diagram (see below).

Stress-Strain Curve Fracture Stress (Tension, Load) Yield **Ultimate Strength** Strength Plastic Deformation **Elastic Limit** Last point of re-usability **Proof Load** 80-90% of yield strength Clamp Load 75% of proof load Industry accepted value Elastic Deformation Strain (Stretch, Elongation)

Most parts of a bolted assembly operate within the elastic region and revert to shape after the load is released, but this is only if the induced stresses have not exceeded the underlying material's yield strength. A bolt assembly that is properly tensioned should be working in the elastic range (in green), if the load applied causes the fastener to exceed its yield point, it enters the plastic deformation range (in pink).

Bolts have a defined Proof Load which is an applied tensile load that the fastener must support without permanent deformation. The Yield Point is the point at which permanent deformation begins. At this point, the metal is no longer able to return to its original shape if the load is removed. Continuing with the application of more load, gets us to the maximum stress load. Beyond this point the fastener continues to "neck" and elongate further, with a reduction in stress.

We have used the ISO 898-1 standard for the calculations we provide on the various class of bolt most commonly used in bolted connections We use a Clamp Load that is 75% - 80% of the defined Proof Load, and we will show you how to verify whether any combination of applied torque and preload for any particular class of bolt falls within the mechanical limits that the standard sets. Everything revolves around how much stress a load will induce in the bolt, and what deformation of the bolt can be tolerated.

Understanding the effect of k-factor

The best way to think of the K_{est} / Nut Factor is as a <u>measure of as anything that increases or decreases the friction</u> within the bolted assembly and the threads of the nut. There are three contribution factor

- 1) the friction between the threads of the bolt and the threads of the nut - called the Thread Friction - uth or us (s as in shank)
- 2) the friction of the nut against the surface against which it rotates and bonds - called the under-head friction. - un or uw and
- 3) friction causes by variations in geometry and the profile of the threads - geometric friction - sometimes frictional drag associated with the thread locking adhesive is included here

This 3rd contribution is only generally only apparent when the thread is damaged (nicked) or intentionally through design

We calculate what Torque must be applied to a bolted connection using: T=K×d×F

Where:

d = the nominal diameter of the bolt thread

F = the Load that must be generated from applying the Torque, and K = the Nut Factor (also called the K factor, torque coefficient, friction

Fortunately, the K-Factor can be looked up in tables that have been

- empirically worked out for you. But as a rule of thumb, you can use the following estimations, where the Bolt Condition is:
- Non-plated and dry K = 0.2 to 0.3
- Zinc-plated and clean. But dry K = 0.17 to 0.22
- Black Oxided and lubricated- K = 0.13 to 0.18 Properly lubricated - K = 0.10 to 0.14

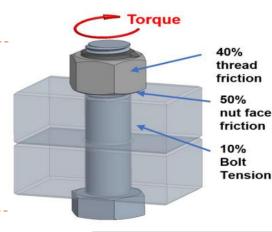
Bolt and Nut Coarse Screw Threads

JIS B 0205 (ISO 724) thread standard

		Coe	efficier	nt of Fr	iction	K						
Dahusaa Thaaada	Between Bearing Surfaces, μ _W											
Between Threads, μ _s	0.08	0.10	0.12	0.15	0.20	0.25	0.30	0.35	0.40	0.45		
0.08	0.117	0.130	0.143	0.163	0.195	0.228	0.261	0.293	0.326	0.359		
0.10	0.127	0.140	0.153	0.173	0.206	0.239	0.271	0.304	0.337	0.369		
0.12	0.138	0.151	0.164	0.184	0.216	0.249	0.282	0.314	0.347	0.380		
0.15	0.153	0.167	0.180	0.199	0.232	0.265	0.297	0.330	0.363	0.396		
0.20	0.180	0.193	0.206	0.226	0.258	0.291	0.324	0.356	0.389	0.422		
0.25	0.206	0.219	0.232	0.252	0.284	0.317	0.350	0.383	0.415	0.448		
0.30	0.232	0.245	0.258	0.278	0.311	0.343	0.376	0.409	0.442	0.474		
0.35	0.258	0.271	0.284	0.304	0.337	0.370	0.402	0.435	0.468	0.500		
0.40	0.285	0.298	0.311	0.330	0.363	0.396	0.428	0.461	0.494	0.527		
0.45	0.311	0.324	0.337	0.357	0.389	0.422	0.455	0.487	0.520	0.553		

Bolt and Nut Fine-Screw Threads

JIS B 0207 thread standard (ISO 724)


Torque [Nm]

lubricated thread

adhesive on thread

		Соє	efficier	nt of Fr	iction	K					
Between Threads, μ _s	Between Bearing Surfaces, μ _W										
велмеен ниеваз, из	0.08	0.10	0.12	0.15	0.20	0.25	0.30	0.35	0.40	0.45	
0.08	0.106	0.118	0.130	0.148	0.177	0.207	0.237	0.267	0.296	0.326	
0.10	0.117	0.129	0.141	0.158	0.188	0.218	0.248	0.278	0.307	0.337	
0.12	0.128	0.140	0.151	0.169	0.199	0.229	0.259	0.288	0.318	0.348	
0.15	0.144	0.156	0.168	0.186	0.215	0.245	0.275	0.305	0.334	0.364	
0.20	0.171	0.183	0.195	0.213	0.242	0.272	0.302	0.332	0.361	0.391	
0.25	0.198	0.210	0.222	0.240	0.270	0.299	0.329	0.359	0.389	0.418	
0.30	0.225	0.237	0.249	0.267	0.297	0.326	0.356	0.386	0.416	0.445	
0.35	0.252	0.264	0.276	0.294	0.324	0.353	0.383	0.413	0.443	0.472	
0.40	0.279	0.291	0.303	0.321	0.351	0.381	0.410	0.440	0.470	0.500	
0.45	0.206	0.210	0.220	0.240	0.270	0.400	0.427	0.467	0.407	0 5 2 7	

A low nut factor gives a higher preload and clamping force but puts the bolt closer to yield while a high nut factor gives a lower preload and clamping force but the capacity of the joint to resist external tensile loads has been reduced

When tightening a bolt, the same amount of torque applied to the assembly will result in more of the energy being used on overcoming friction rather than applying load to the bolt!

All things being equal, the same Torque applied to a DRY bolt will end up with LESS preload than the same amount of Torque being applied to a well lubricated bolt! Of course, a well lubricated connection, will more easily loosen spontaneously! Below is a summarised chart of the ISO 898-1 mechanical properties for bolts which are most widely used in fastening. Throughout our calculations and testing we have adhered to the most common convention of bolt design

Proof load is defined as the maximum tensile force that can be applied to a bolt that will not result in plastic deformation. A material must remain in its elastic region when loaded up to its proof load typically between 85-95% of the yield

Clamp L:oad (preload) - For a reasonable factor of safety, use 75% to 80% of the Bolt rating. Acceptable Pre-Load load is typically 75% of Proof load but we have

Mechanical Property	Property Class									
меснанка и орегту	as her 120 030-1	4.6	6.8	8.8<=M16	8.8>M16	10.9	12.9			
Tensile Strength, N/mm²	nominal	400	600	900	900	1040	1200			
Rm	min	420	600	800	830	1000	1220			
Yield Strength, N/mm²	nominal	320	480	640	640	900	1080			
Rm	min		480	640	660	940	1100			
Stress Under Proof Load Rp0,2, N/mm²	nominal	225	440	580	600	830	970			
Vickers Hardness,	max	220	250	320	335	380	435			
HV	min	120	190	2250	255	320	385			
Brinell Hardness,	max	209	238	304	315	360	415			
HB	min	114	181	238	240	305	365			
Rockwell C Hardness,	max				34	39	44			
unc	:				22	22	20			

Please turn over to read the Torque and Target preload tables for different lubrication and bolt class combinations

K-factor of 0.153 would be if something like **Graphite Paste** is used K-factor of 0.173 if a <u>lubricating oil</u> is used K-factor of 0.258 is if no lubrication is used and the bolted connection is dry.

Match Engineering
Anti-loosening Conical
Wedge Lock Washer Pairs
for Bolted Connections.

Or do you need to contact us?

Torque and target preload tables for different lubrication and bolt class combinations Mechanical Properties as per ISO 898-1

K-factor of 0.153 would be if something like <u>Graphite Paste</u> is used

K-factor of 0.173 if a <u>lubricating oi</u>l is used

K-factor of 0.258 is if no lubrication is used and the bolted <u>connection is dry.</u>

		(Q)	Pitch	G _r :	፣ 70.00ኒ	6.8		8.8			10.9	12.9		
Bolt	-11-		Course	Area	70.00%	Preload	Torque	Preload	Torque	Preload	Torque	Preload	Torque	
ize	S [mm]	M [aa]	[==]	[== 2]	factor	[kN}	{Nm}	[kN}	{Nm}	[kN}	{Nm}	[kN}	{Nm}	
			_		0.153		16255		22162		30658		35829	
M80	64	100	6	4311	0,206 0,258	1328	21885 27 41 0	1811	29839 37371	2505	41278 51697	2927	48240 60417	
					0.153		19677		26829		37115		43374	
V185	68	120	6	4912	0.206	1513	26493	2063	36123	2854	49972	3335	58399	
					0.258 0.153		33180 23547		45242 32116		62586 44426		(3141 51920	
M90	72	130	6	5553	0.206	1710	31703	2332	43241	3226	59816	3771	69905	
			_		0.258		33706		54156		(4815		87551	
И95	76	405	c	6000	0.153	4900	27907 27574	0010	38051 54020	2604	52637 20024	4000	61515 90904	
VIOS	76	135	6	6233	0,206 0,258	1920	37574 47059	2618	51232 64165	3621	70871 88761	4232	82824 103731	
					0.153		32757		44673		61798		72222	
/100	80	145	6	6952	0.206 0.258	2141	44105 55238	2920	60148 75331	4039	83206 104209	4720	97240 121786	
					0.230		38154		52028		71973		84113	
M105	84	140	6	7711	0.206	2375	51371	3233	70051	4480	96905	5236	113250	
					0.258		64333		87734		121366		141838	
V1110	88	155	6	8509	0.153 0.206	2621	44111 59392	3574	60147 80982	4944	83203 112024	5778	97237 130920	
11110		100	·	0500	0.258	2021	(4384	0014	101424	4044	140302	5110	163368	
			_		0.153				63066		35541		111656	
A115			8	9346	0,206 0,258			3925	92990 116464	5430	128637 1611U8	6346	150334 188283	
					0.153				78823		109040		127431	
V120			8	10222	0.206			4293	106128	5939	146812	6941	171574	
					0.258				132318		183871		214884	
V1125	100	180	6	9346	0.153 0.206			4524	86525 116498	6259	119694 161156	7314	139884 188341	
					0.258				145906		201837		23588	
MAA				10000	0.153			4040	97831	2004	135334	2050	158161	
M130			8	10222	0.206 0.258			4919	131720 164970	6804	18221 4 228210	7952	212943 255703	
					0.153				113530		157050		183542	
V1135			6	10772	0.206			5497	152858	7604	211453	8886	247122	
					0.258				191443		264830		303500	
411 0	110	200	۰	44744	0.153 0.206			E7E7	123324	7064	170595 229690	9200	199371	
A140	112	200	8	11711	0.206 0.258			5757	166043 207957	7964	229690 287671	9308	26843) 336194	
									141565		195829		22886	
/1145	120	210	6	13087	0.153 0.206			6381	190604	8827	263666	10316	308133	
	ILV	F19	Ÿ	10001	0.258			3331	238717	0021	330222	10010	38592;	
					0.153				152893		211503		247178	
/115 0	128	230	8	13708	0.206			6662	205856	9216	284768	10770	33280;	
-			-		0.258				257819		356652		416811	
					0.153				173867		240515		281084	
A155			8	17456	0.206			7332	234095	10142	323831	11853	378454	
-					0.258				293187		405575		47398	
					0.153				186849		258472		30207	
1160	120	210	6	18173	0.206			7633	251574	10559	348008	12340	406710	
		—·•	-		0.258				315078		435855		50937	
					0.153				225476		311907		36452	
/ 1170	128	230	8	20640	0.100			8669	303581	11992	419953	14015	49079	
	164		v	L0040	0.258			0000	380214	11002	525960	14013	61468(

Checklist before tightening.

- 1. Have you decided on what lubrication you will use for your bolted connection?
- Have you worked out what Torque you should apply to achieve your desired preload?
 - 3. The maximum preload you apply should be around 80% of the bolt's proof load.
 - 4. Are you using the Wedge Lock Washers as a Pair so ha hey can work together?